
Int. J.'Heat Mass Transfer. Vol. 10, pp. 83-95. Pergamott Press 1967. Printed in Great Britain 

THE EFFECT OF WALL TEMPERATURE ON THE 

LOW REYNOLDS N UM BER HYPERSONIC 

STAGNATION REGION SHOCK LAYER 

J. T. C. UU% 
Gas Dynamics Laboratory, Department of Aerospace and Mechanical Sciences, Princeton University, 

Princeton, New Jersey 

(Received 27 September 1965 and in revised form 18 March 1966) 

Abstract--The effect of wall temperature on the behavior of the hypersonic stagnation region shock layer 
in incipient merged layer flow is described. The enthalpy function profile across the shock layer is obtained. 
The shock detachment distance is shown to be subjected to the compensating corrections of an "inflow" 
effect due to velocity slip and an "outflow" effect due to temperature jump, with the main contribution 
coming from the over-all density decrease due to wall heating. The net corrections render the shock de- 
tachment distance to remain relatively constant with K 2 for a fixed wall temperature, where K 2 is the 
rarefaction parameter. The ratio of heat flux behind the shock wave to that at the wall is shown to be 
independent of the wall temperature and is essentially the same as the corresponding ratio when slip 

effects are absent. 

NOMENCLATURE Z,  

a, nose radius; 
C.,  heat-transfer coefficient ; ct, 
cp, specific heat at constant pressure; fl, 
f ,  nondimensional stream function ?, 

(L  = u / u J ;  x), 
H, CpT + (u 2 + v2)/2, total specific en- 

thalpy; 
k, thermal conductivity; also E, 

(2Pr/3){[4/K 2) + 1] ½ - 1}- t; % 
K 2, (£Poo Ua/v.)(T./To), rarefaction para- 

meter; ~, 
Pr, cd~/k, Prandtl number;  
p, pressure; 0, 
4, heat flux; x, 
T, temperature; p, 
U, free stream velocity; p, 
u, v, velocity components tangential and a, 

normal to surface, respectively; ~, 
x,y,  distance along and normal to body 

surface, respectively; 

t Present address: Center for Fluid Dynamics, Division 
of Engineering, Brown University, Providence, Rhode 
Island. 
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distance from centerline to body 
surface; 
thermal-accommodation coefficient ; 
local body surface inclination; 
c/c~, ratio of specific heats; 

I exp ( -  t) t ~ dt, incomplete gamma 1 

o 
function of order a and argument Z; 
(7 - 1)/(? + I); 
Howarth variable: transformed normal 
distance to body surface; 
transformed tangential distance along 
body surface; 
(H - H~)/(H~ - Hw); 
longitudinal body surface curvature; 
viscosity; 
density; 
Maxwell's reflection coefficient; 
stream function. 

Subscripts 
w, wall; 
~ ,  free stream; 
* denotes reference conditions; 
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s, at the outer edge of shock layer; 
0, stagnation condition in free stream 

(e.g. To), also zero-th order (no-slip) 
quantity; 

1, first-order perturbation quantity. 

I. I N T R O D U C T I O N  

AN INTERESTING as well as unique feature in 
low Reynolds number hypersonic experimental 
facilities, exemplified by the Princeton hot 
nitrogen hypersonic wind tunnels [1], is that 
measurements in the laboratory can be achieved 
in steady-state conditions. With the advantage 
of long-duration testing time, measurements of 
wall temperature effects in low Reynolds number 
hypersonic flow can then be more conveniently 
carried out. 

In this paper the classifications of the various 
low density hypersonic flow regimes described 
by Hayes and Probstein [2] are used. The 
Mach number and unit free stream Reynolds 
number in the Princeton hot nitrogen wind 
tunnel can be obtained at about 20 and 4 x 102 
per in, respectively, so that on a 0.2 in radius 
sphere the flow in the stagnation region would 
be in the incipient merged layer regime. In this 
regime the viscous boundary layer begins to 
merge with the shock wave and there are 
relatively strong viscous and heat conduction 
effects immediately behind the shock wave. 
The analysis given here is concerned with this 
regime. 

The continuum formulation of rarefied hyper- 
sonic flow was  advocated in the pioneering 
works of Adams and Probstein [3], Probstein 
[-4, 5] and Probstein and Kemp [6]. In the 
approach of the last reference, numerical in- 
tegrations of the Navier-Stokes equations were 
carried out for highly cooled and for insulated 
walls after certain symmetry assumptions in the 
stagnation region were made and the as- 
sumption of constant density. Subsequently, 
Levinsky and Yoshihara [7] gave numerical 
results for the case when the constant density 
assumption was removed. Implicit in the 
symmetry assumptions, however, is the condi- 

tion that the shock layer and shock structure 
must necessarily be thin compared to the body 
radius. 

The continuum description of low Reynolds 
number hypersonic flow based consistently 
on the "thin shock layer" approximation was 
brought to its present stage of fruition in a 
series of papers by Cheng [8, 9]. For the in- 
cipient merged layer regime the problem in the 
shock layer is entirely independent of the shock 
wave structure. The conditions at the outer 
edge of the shock layer are those of the modified 
Rankine-Hugoniot relations taking into account 
viscous shear stress and heat conduction behind 
the shock wave. The effects of shock thickness 
and curvature do not enter into the first-order 
thin shock layer analysis. The shock structure 
can be calculated once the shock layer solution 
is given. With the assumption of a linear 
viscosity-temperature relation, the problem for 
the shock layer can then be exactly solved and 
represented in terms of known functions. The 
heat-transfer coefficient obtained compares well 
with experiments (see Cheng [8, 9], Cheng 
and Chang [10]). This regime of flow is also 
discussed by Bush [11]. 

The effect of increasing Tw/To is to introduce 
slip effects at the wall and it can be considered 
as a perturbation of the basic no-slip solution 
within continuum considerations. The order 
of this effect has been estimated by Cheng [9] 
and by Cheng and Chang [12] to be (ETw/To) ½, 
where E ~ yJa ,~ 1 is the order of the shock 
layer thickness ratio. The effect of wall tempera- 
ture on the stagnation region surface heat- 
transfer rate has been considered in detail by 
Cheng and Chang [12]. They derived a slip 
correction to the no-slip heat-transfer coefficient 
obtained earlier by Cheng [8] for the K 2 = 0(1) 
regime. These authors also qualitatively dis- 
cussed the slip effects on the shock detachment 
distance in the limiting case of T,~/To ~ 1. 

Because of the practical interest associated 
with hypersonic flight and laboratory experi- 
ments in low Reynolds number hypersonic 
flow, the effect of wall temperature on the 
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behavior of the entire shock layer itself is of 
interest as well. The present paper complements 
the work of reference [12] by providing the 
effect of wall temperature on (1) the detailed 
distribution of the enthalpy function across 
the shock layer and (2) the shock detachment 
distance or the shock layer thickness. 

In deriving the surface heat-transfer rate, 
Cheng and Chang [12] used a normal coordinate 
related to the stream function.t This introduces 
a singularity at the wall when the slip boundary 
conditions are applied. This difficulty was 
removed through the use of an inner and outer 
expansion technique [12]. In the present paper, 
the shock detachment distance and enthalpy 
function corrections due to slip effects will be 
derived through the use of the Howarth trans- 
formed normal coordinate where the problem 
may be considered in a similar manner to that 
of Lin and Schaaf [-14] for the low-speed high 
Reynolds number stagnation region (see also 
Lees [15]). This is particularly advantageous 
in seeing physically how the slip effects affect 
the shock detachment distance. As a by-product 
the surface heat-transfer rate is obtained which 
verifies the low Reynolds number hypersonic 
stagnation region slip flow heat-transfer formula 
of Cheng and Chang [12] through an alterna- 
tive derivation. 

There are two slip effects: velocity slip and 
temperature jump. Their effect on the shock 
detachment distance is such that they tend to 
counteract each other. Velocity slip at the wall 
gives rise to an additional mass flow within the 
shock layer and thereby induces a mass "inflow" 
effect from the outer edge of the shock layer and 
reduces its thickness. On the other hand, the 
temperature jump gives rise to an additional 
expansion of the gas near the wall and induces 
an "outflow" effect which tends to thicken 
the shock layer. The wall temperature depen- 
dence of the "outflow" effect behaves like 
(1 - Tw/To) Tw/To for a fixed rarefaction para- 

meter K 2 in the incipient merged layer regime. 
This quantity has a maximum at Tw/To = ½ 
so that the "outflow" effect decreases as 
Tw/To --* 1 when Tw/T o > I- The "inflow" effect, 
on the other hand, behaves like 

ToJ\ToJ + 

where kl and k2 are constants for a fixed 
rarefaction parameter in the incipient merged 
layer regime, and increases monotonically with 
Tw/To. This implies that, as the wall temperature 
increases, the "outflow" effect eventually be- 
comes small and the "inflow" effect dominates. 
However, the bulk of the contribution to the 
shock detachment distance comes from the 
overall decrease of the density level in the shock 
layer with wall temperature. 

In Section II the thin shock layer equations 
and boundary conditions are stated. The pertur- 
bation shock layer solution is discussed in 
detail in Section III, including the first-order 
shock layer equations and the perturbed shock 
and wall boundary conditions, the first-order 
stream function and the shock location, and 
the distribution of the enthalpy function across 
the shock layer. Section IV discusses the various 
corrections to the shock detachment distance. 
Section V discusses the relative extent of heat 
conduction across the entire shock layer. 

II. S H O C K  LAYER E Q U A T I O N S  AND 
B O U N D A R Y  C O N D I T I O N S  

The thin shock layer equations obtained by 
Cheng [8, 9] are, for an axisymmetric blunt 
body in the incipient merged layer regime, in 
physical coordinates (see sketch in Fig. 1), 

Continuity 

~puZ dpvZ 
- -  + - -  = 0 (2 .1)  

c3x ~y 

Momentum 

~u c~u a [ c~u'~ 
+ = t In spirit, the square root of the similarity variable used (2.2) 

by von Kfirmfin and Tsien [13]. 
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Energy 

0H 0H 
pu~, x + pv Oy 

State 

~P ~- Kpu  2 (2.3) 
#y 

_ 1 0 ( / t 0 H ' ]  

PrOy \' ~yv) 

+ ( l - ~ ) ? l y ~ /  ¢~.)-) (2.4, 

p = pRT.  (2.5) 

We assume Pr and cp are constants. Cheng 
[8, 9], however, retains the tangential pressure 
gradient -Op/Ox, second order in the incipient 
merged layer regime, to permit uniform exten- 
sion of his solution towards the higher Reynolds 
number range. Cheng [8, 9] also obtains, for 
the conditions at the outer edge of the shock 
layer, the modified Rankine-Hugoniot relations 

U ----~ 

Shock structure 

FIG. 1. Thin shock layer and notation. Schematic. 

~u 
p~vo~(u- u ~ ) =  # Oy, P = P~VZ~ 

poovo~(H-Ho~) - I~ O [H u2] Pr Oy + (Pr - 1)~- 

Y = Ys (2.6) 

where u~ = U cos fl, voo = - U sin ft. The loca- 
tion of the outer edge of the shock layer, y=, 
is to be simultaneously determined with the 
solution of the shock layer problem. With the 
conditions at the wall given, the problem in 
the shock layer is then specified and can be 

solved independently of the shock wave struc- 
ture. In the following analysis, we will be only 
concerned with the shock layer-solution. The 
conditions at the wall, in terms of first-order 
slip effects, may be written as [16] 

U - -  

g Gpp) ay 
2 7 1 2  k / ( )  - -  ~ rc # 0T 

T~ - T w 7 +11 Pr c~ Y x/(PP) Oy 

y = 0 (2.7) 

where a is Maxwell's reflection coefficient and 
the thermal-accommodation coefficient. 

#/x/(PP) is to be evaluated at the surface gas 
temperature Tb which is as yet unknown. In the 

subsequent approximations for "small slips '' 
within continuum considerations, however, 
#/x/(PP) can be evaluated at the wall tempera- 
ture Tw which is here assumed to be constant. 
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Except for the presence of the pressure 
gradient normal to the surface, which does not 
enter in the subsequent considerations of the 
stagnation region, the thin shock layer equations 
resemble the usual compressible boundary- 
layer equations. Here, in general, the conditions 
for the outer edge are to be satisfied at the 
as yet to be determined shock layer edge, 
instead of at infinity as in the boundary-layer 
problem. Drawing from compressible boundary- 
layer theory, we introduce the Howarth-Levy 
transformations in the form similar to that 
given by Lees 117]: 

= S Po#oU~ Z2 dx ] 

u~Z " I (2.8) rl = ~--~) l p d y 

With the introduction of the stream function 

pu 2nZ = Od/ pv 2nZ - Od/ (2.9) 
Oy' Ox 

and its nondimensional form 

u 
= - -  = f '  (2.10) 

f 2nx/(2¢)' u o0 

the continuity equation is then automatically 
satisfied. The prime indicates differentiation 
with respect to q. With a nondimensional total 
enthalpy function defined as 

H - H w 
0 = (2.11) 

Hoo - Hw 

the shock layer equations for the stagnation 
region, where Z ,,, x, uoo ~ U(x/a), become 

f,,, + i f , ,  _ ½f,2 = 0 (2.12) 

p' = 0 (2.13) 

0" + PrfO' = 0. (2.14) 

The linear viscosity-temperature assumption is 
made (i.e. pp = constant). One is referred to the 
discussion by Cheng and Chang [10] for the justi- 
fication of the assumption. The Howarth variable 
in the stagnation region is now reduced to 

= ( x / 2 ) r f  p dy (2.15) 
3 Poo a 

and the rarefaction parameter K 2 is defined as 

K 2 = Ep®Ua|#°T*|/ \ (2.16) 
go \ p ,  To] 

where p,  is to be evaluated at the appropriate 
reference temperature T, similar to that dis- 
cussed in reference [10]. K 2 =  0(1) for the 
incipient merged layer regime. 

The outer boundary conditions now appear in 
the form 

,7 = ( 2 . 1 7 )  

where qs is to be simultaneously determined 
with the shock layer solution from the mass 
conservation condition ~ = p~oUrcx 2. This is 
[(x/2)/K]f(qs) = 1 interrnsofthenondimensional 
stream function. The conditions at the wall are 

f = 0  

f ,  2 - a  It / nTb'~JK_ ~ 

o -  1 2 - c ,  / {  o, 

(2.18) 

IIL PERTURBATION S H O C K  LAYER S O L U T I O N  

A. First-order shock layer equations 
Within the thin shock layer continuum des- 

scription of low Reynolds number hypersonic 
flow, the effect of velocity slip and temperature 
jump can be treated as a perturbation on the 
no-slip solution. Since the slip effects are of 
order x/E, one then expands as follows : 

f = fo + (~/E)f, + . . .  (3.1) 

0 = 0o  + ( ~ / E ) 0 1  + . . .  (3 .2 )  

where the zero-th order functions are Cheng's 
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[8] no-slip stagnation region shock layer 
solution. Since the zero-th order functions [8] 
appear repeatedly in the first-order problem, 
they are quoted in Appendix A for the purpose 
of reference. 

The first-order perturbation shock layer equa- 
tions are obtained by substituting the expansions, 
equations (3.1) and (3.2), into equations (2.12) 
and (2.14), retaining terms only of the first 
order 

f~ '  + fof; '  - f of'~ + f ~ f l  = 0 (3.3) 

Oi' + PrfoO'l = - Pr O'ofv (3.4) 

With Cheng's [8] stream function fo, stated in 
Appendix A, the first-order momentum equa- 
tion, (3.3), then becomes 

f~'  + C(q2fl ' - 2 q l  + 2fO = 0. (3.5) 

Upon substituting Cheng's [8] enthalpy func- 
tion 0o, also stated in Appendix A, the first- 

The shock boundary condition for f l  is then 

order energy equation (3.4) becomes 

0'~ + Pr C r / 2 0 ' l  ~ -  - Pr{(Pr KCno/x/2) 

x exp [ -  k(r//r/~o)3]} f v  (3.6) 

B. First-order shock and wall boundary conditions 
Although the exact location of the outer 

edge of the shock layer is as yet unknown, it 
may be written as the following expansion 

r/$ = r/so + (x/E) r/.,, + . . .  (3.7) 

where q$1 is the first-order shock location per- 
turbation, to be determined as part of the solution. 
The first-order shock boundary conditions are 
obtained by substituting the expansions, equa- 
tions (3.1) and (3.2), into equation (2.17) and 
subsequently transferring the location where the 
conditions are to be applied from r/.~ to rho by 
a Taylor expansion. 

f'~ + [(x/2)/K]f~ = - r/s, { fo  + [(x/2)/K]f~) '} ] 
= -r/s, 2C j ~ r /=  q.,o- (3.8) 

The corresponding condition for 01 is 

O, + [(x/Z)./PrK] Oi = -r/s,{O'o + [(x/Z)/(VrK)]O;} ~ 
= 0 f r /=  r/so. (3.9) 

The right side of equation (3.9) becoming zero can be easily shown by substituting 0~ = -PrfoO'o 
from Cheng's [8] energy equation and subsequently noting that the zero-th order stream function is 
required to be [(x/2)/K] fo = 1 at ~/ = r/so from mass conservation considerations. 

The boundary conditions at the wall are now 

f ~ = O  t 
2 - a / ( r c T w ~  2 - or%/( r~ T ~ ) ~ -  r/ 0 =  (3.10, 

f'~ = ~r Xl \ 2  To,] f'~ - a 2 2C 
and 

2T 1 2 - ~  I(~_Tw"~K2_O,o - 2T 2 - ~  I ( r tTw'~Cuo}r l=O.  (3.11> 
~'+ l P r  ~ q \ 2 T o ]  7 + 1  ct q \ 2 r o ]  

01 

C. First-order stream function and shock location 
The first-order momentum equation, given 

by equation (3.5), has the exact solution (see, 
for instance, Kamke [18]) 

f l  = a,r/ + a2r/2 + a3{r/Ir/-2 exp [-- Cr/3/3]dr/ 
0 

_ )12 i r/-3 exp [_Cr/3/3] dr/} (3.12) 
0 
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where ax, a2 and a 3 are constants to be deter- 
mined. The fact that a 3 must vanish in order 
to satisfy the first of equations (3.10) may be 
seen by evaluating the integrals by parts once 
to bring out the finite contribution at r /=  0. 
The third term in equation (3.12) becomes 

a3 

7 k ~ , - ~ - )  - ½exp( - 

Both incomplete gamma functions vanish at 
r / - -0 ,  while the exponential term gives a 
contribution of -½. Hence as -- 0. 

The second condition in equation (3.10) gives 

2 - a / / / "~nTw x/2 2 
a x -  tr 4 k 2 T o o ) K  C. (3.13) 

The shock boundary condition, equation (3.8), 
gives 

a2 = - -  (al + rh,2C)/2 [(x/2)/K + qso]- (3.14) 

The solution for the first-order stream func- 
tion, ./'1, still contains the unknown rh, which 
is to be presently determined. At the outer 
edge of the shock layer r h, we recall from the 
previous discussion in Section II that the 
nondimensional stream function is required to 
be [(x/2)/K] f(r/~)= 1. In terms of the first- 
order quantities, after transferring the applica- 
tion of this condition from q~ = r/so + (x/0 q~, + 
• .. to qso, we have 

t/~,f~ + f l  = 0 at t / =  t/s o. (3.15) 

Substituting equation (3.14) into equation (3.12) 
(with a 3 = O )  for fl ,  equation (3.15) then 
determines r/s , as 

~l~, = - al/2C (3.16) 

where a 1 is given by equation (3.13). Upon 
substituting ~/s, back into the solution for f l ,  
equation (3.14) then gives the condition that 
a2 = 0. Finally 

c] f l  ) 2 r/. (3.17) 

A useful form of ~/s, is the ratio rh,/r/so, which 
may be written in the form 

"s, 2 Tw'~(Pr'~ 
r/so a 5 ~ o  ] \ ~ / / .  (3.18) 

The physical reason for q~, being negative is 
that the additional mass flow near the wall 
due to tangential velocity slip induces an inflow 
of mass across the outer edge of the shock layer, 
and this has the direct effect of reducing the 
shock layer thickness. 

D. First-order enthalpy function 
The nonhomogeneous first-order energy 

equation, (3.6), can be integrated directly to 
give 

t/ 

O, = - Pr(Pr KCuJx/2) [. exp [-k(O/r/so) 3] 
0 

x Sfl(r/') dr/' dF/ 
0 

i/ 

+ bl S exp [ -  k(f//r/so) 3] dO + b2. (3.19) 
o 

With f l  given by equation (3.17), equation 
(3.19) can then be put into the form 

0 1 -  2 tr 2 Pr Cuo 

x {1 - exp [k(~//r/so)3]} 

+ b t ~ - ~ k ~ 7  j , k  ~ + b2. (3.20) 

From the shock boundary condition for 01 
given by equation (3.9), bl is determined as 

bl 5To) er 

x Cno - P r y +  12 a 

x [er K CR'~. (3.21) \ ,/2 o/ 

This form is obtained through the use of the 
definition of Cheng's [8] heat-transfer coefficient 
Cno, quoted in Appendix A. 
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The wall boundary condition, equation (3.11), 
determines b2 as 

27 2 -  ~ /{Tt T~) C b2 -  7 + 1 ~ -%/~2Too) n,,. (3.22) 

Through the use of Cheng's [8] enthalpy 
function 0o (and 0~)), the first-order enthalpy 
profile given by equations (3.20), (3.21) and (3.22) 
can be written entirely in terms of the zero-th 
order functions 

01(t/)- 2 - aX/(n Tw 2Too Pr Pr x/'2 0°(t/) 

+ -o p--r  + 1 2 z g g  "l 

x [1 - 0o(r/)]t . (3.23) 

To illustrate the effect of wall-temperature 
ratio on the over-all enthalpy function across 
the shock layer, Figs. 2, 3 and 4 are presented 
for the values of rarefaction parameter K 2 = 10, 
4 and 1, respectively. The normal coordinate is 
r//t/~o. For a fixed value of K 2, increasing the 
wall temperature increases the value of the 
enthalpy function from its no-slip value 0o. 
This effect is more pronounced near the wall. 

I 0  - -  

K 2= I0 

0'~ 

O'E 

0o 

0.2 

. . . .  0.'5 

- - - -  . . . .  ~ 0 " 7  

0"2 0"4 0"6 0-8 I '0 
8 

FIG. 2. E n t h a l p y  f u n c t i o n  as f u n c t i o n  o f  ~l/rlso, for  K 2 = 10. 

7 = 1.4, Pr = 0.71, rr = ~ = 1 a n d  v a r i o u s  v a l u e s  of  Tw/To. 

i.o 

K2=4 

0.8 

0.6 

F 
0 " e l -  / / L ~ Y -  - - - 0 " 3 3 3  

- - - - 0 . 5  

. . . .  0 .7  

o 0.2 0.4 0.6 0.8 
I 

i.o 

0 

FIG. 3. F n t h a l p y  f u n c t i o n  as  f u n c t i o n  o f  q,'r/,o, for  K 2 = 4, 

7 = 1.4, Pr  = 0.71, rr = a = 1 a n d  v a r i o u s  v a l u e s  o f  Tw/To. 

1.0 

0 .8  

0 .6  

0 .4  

0-2 

/(2=1 

. rw =o. I 
- r o 

- 0 . 2  

- 0 . 3 3 3  

0 - 5  
0-7  

I I I 
0.2 0 .4  0.6 0 -8  

0 
FIG. 4. F n t h a l p y  f u n c t i o n  as f u n c t i o n  o f  rL/tho, for  K 2 = 1, 
7 = 1'4, Pr  = 0.71, a = ~ = 1 a n d  v a r i o u s  v a l u e s  o f  Tw"To. 

At the same time the outer edge of  the shock 
layer is brought closer to the wall due to the effect 
of velocity slip. For a fixed wall-temperature 
ratio, the distortion of the no-slip enthalpy 
function becomes more pronounced as K 2 
decreases. 
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E. Relation between physical and transformed 
coordinates 

The re}ation between the physical coordinate 
y and the transformed coordinate r/is obtained 
by inverting the Howarth transformation. Its 
form for the stagnation region is defined by 
equation (2.15). Since the pressure is constant 
across the shock layer at the stagnation region, 
the density ratio Po/P is simply T~ T o. The latter is 
simply related'to the enthalpy function 0 in the 
stagnation region. The physical distance normal 
to the wall is then obtained from the integral 

All the first-order "inflow" correction is 
embedded in the integration of the first two 
terms in equation (3.24) with respect to. ~/over 
the interval 0 ~< ~/. ~< eso + (~/E)Gc The func- 
tions resulting from this integration are further 
expanded in a Taylor series about r G. To be 
consistent only the first-order perta~bations 
need to be retained. The zero-th order functions 
resulting from such an expansion would be the 
basic contribution to the shock detachment 
distance obtained from Cheng's I-8] solution. 

Y - l ~ l ~ T w  ( Tw)[Oo(fl)+(x/g)Ot(fl)+ . ]}dr / .  (3.24) 
ca (x/2)K ,](To + 1, Too "" 

o 

For brevity, we define ( = r/#ho. The physical coordinate is then obtained as 

KZ Pr Ea= T~ ( + ( 1 -  ~oo)[(O°(~) - O 

- a  ~T~ T,~ 1 C 1 
+ - -  1 -  Pr ~ 0 o ( 0 +  no P--ry + 1 2 - a a  a - - 0 o ( 0 ]  

+ k ½ ~(-~, k(a))}. (3.25) 

Again, use is made of the definition of Cheng's [8] enthalpy function 0o. 

IV. SHOCK DETACHMENT D|STANCE 

The shock detachment distance is obtained by 
carrying the integral in equation (3.24) to the 
perturbed edge of the shock layer r/, = r/s o + 

+ . . . .  

The first-order functions, linear in x/E, are then 
the actual "inflow" correction terms. The inte- 
gration of the third term in equation (3.24), up 
to Go only, gives the "outflow" correction terms. 

For the purpose of keeping the various contributions to the shock detachment distance distinct 
as discussed above, we may write 

/ [Ysl~ Y~ 
ca Ea \ *a/lnflo w ~ Ea/outflo w 

The three functions on the right of equation (4.1) are then defined as: 

(1) The zero-th order contribution is the shock detachment distance given by Cheng [8] for the 
no-slip case 

ca PrK2[T  ° + 1 - k*Cno[y({,k) - k-*y({,k)] . (4.2) 
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(2) The "inflow" correction, due to velocity slip, is 

\ E a , / i n n o  w q \ 2 J  a K 2 T~o + l - T o , ] \ T o / /  

(3) The "outflow" correction, due to temperature jump, is 

(de) Y" = + K2 C.o 1 - To ) \To , ]  [3k ~7(3' ) \ ea  ]Outflow O" 

+ /~r 7 + 1 2 - a~  - no[7(3, k) - 7(3, k)]) . 

(4.31 

(4.4) 

The negative o f  (x/e)(ys,/ea)lnrlow is shown in 
Fig. 5 as solid lines as a function of Tw/To for 
various values of K 2, while (x/O(Y~,/m)outnow is 
shown in the same figure as dotted lines. The 
"inflow" correction is monotonic and always 
tends to decrease the shock detachment distance. 
The "outf low" correction always give a positive 
contribution and has a maximum at Tw/To = 
0.333, beyond which it decreases. The difference 
between the solid and dotted curves for a fixed 

0 ' 6  ~ - ~ ( f f S ,  /EO)[nf,ow 

(2= 0 • 

# / ' - ,  

t "" 

0 0.2  0 .4  0 .6  0.8 bO 

r./ro 
FIG. 5. S h o c k  d e t a c h m e n t  d i s t ance  " i n f l o w "  a n d  " o u t f l o w "  
c o r r e c t i o n s  as f u n c t i o n  of  w a l l - t e m p e r a t u r e  ra t io ,  for  7 = 

1.4, Pr = 0.7l ,  a = ~ = 1 a n d  va r ious  values  of K 2. 

K 2 gives the net correction to the zero-th order 
no-slip shock detachment distance. For the 
range of K 2 shown in Fig. 5, the net correction 
to the shock detachment distance is positive 
for the lower range of wall temperature ratios 
(Tw/To < 0"2) and is negative beyond this range 
(Tw/To > 0"2). 

The dotted lines in Fig. 6 show the zero-th 
order no-slip shock detachment distance ob- 
tained by Cheng [8], (yso/Ea), as a function of the 
rarefaction parameter for various wall-tempera- 
ture ratios. The solid lines are the new shock 
detachment distances with the slip corrections 
applied. For  the lower ranges of wall-tempera- 
ture ratios (yso/Ea) tends to increase with K z, 
while the corrections give a net positive contri- 
bution. For relatively higher ranges of wall- 
temperature ratios (y.,,,/~ a) tends to decrease with 
K 2, while the corrections give a net negative 
contribution. Hence the corrected shock detach- 
ment distance tends to remain constant with K 2 
as shown in Fig. 6. At K 2 =  1, for instance, 
(ys/ea) at Tw/To ~ 0.5 is about twice its value 
at Tw/To ~ O, that is, YJ(Y~)rw/ro ~ 0 ~ 2. This is 
certainly an experimentally observable ratio. 

V. H E A T  C O N D U C T I O N  A C R O S S  S H O C K  L A Y E R  

The extent of heat conduction across the 
entire shock layer is of interest in the incipient 
merged layer regime. In particular, this consi- 
deration will give the slip effects, if any, on the 
relative extent of heat conduction into the 
shock layer at the outer edge of the shock layer 
as compared to heat conduction into the wall. 
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F1G. 6. S h o c k  d e t a c h m e n t  d i s t ance  as f u n c t i o n  o f  r a r e f a c t i o n  p a r a m e t e r ,  for  
y = 1.4, Pr = 0'71,  a = cc = 1 a n d  va r i ous  values  of  Tw/T o. 

The following nondimensional ratio is written r/s o + (x/E)r/sl + . . .  to its corresponding value 
for any point across the shock layer: at the wall, equation (5.2). This then gives the 

pooU(H~ - Hw) PrK ' 2  To l Pr2 a I_~o~o,] 

+ 1 Cno + . . .  
y + 1 2 - a 0 t  

~ Cno exp [ -  k(r//r/,o)3 ] 
[ n T , \  2 - a  ~ 2+ 

1 + ~ Pr - 1 Cno 
a Lkr/,o/ fir y + 1 2 - tret 

where use is made of equation (3.23) and the definition of 0~(r/). 
At the wall equation (5.1) becomes 

[k(OT/Oy)]w C.o 
C H ~ ~., 

p~ U(Hoo - Hw) / [  nTw~ - a [ ' l  2y 2 - ~ a  

+ x i  - " t, P3 , + 12 - 
1 - 1) Cno 

(5.1) 

(5.2) 

which is the corresponding surface heat-trans- 
fer formula obtained by Cheng and Chang [12]. 
Hence their wall heat-transfer result is verified 
by an alternate method of derivation. 

At the outer edge of the perturbed shock 
layer, equation (5.1) can be appropriately ap- 
proximated by expansion about qso as was done 
before. After performing this expansion, we 
then form the ratio of equation (5.1) at r/s = 

ratio of heat conducted into the shock layer 
behind the shock wave to the heat conducted 
into the wall, 

q_L~ = (q~)o = exp ( - k ) .  (5.3) 
Ow (4w)o 

We thus arrive at the simple result that this 
ratio is the same as the corresponding ratio 
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when slip effects are absent. That is, it is inde- 
pendent of the wall temperature ratio. It only 
depends on the rarefaction parameter K 2 and the 
Prandtl number Pr through the parameter k. 
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APPENDIX A [8, 9] 

The zero-th order problem, which is Cheng's 
[8, 9] no-slip solution for the stagnation region 
when the rarefaction parameter K 2 is of order 
unity, is quoted here for the purpose of con- 
venience. The zero-th order and related func- 
tions appear repeatedly in the perturbation 
solution for slip effects. 

The governing transformed equations are 

f g '  + f o f o  - ½(f~)2 = 0 
t t  

Oo + Pr foOo = O. 

The shock boundary conditions are 

f'o = 1 - [(x/2)/K]f '~ 

0o = 1 - [ ( , / 2 ) / P r  K ]  0o = 

and the wall boundary conditions are/ ;  = fb  = 
0o = 0 at r/ = 0. The solutions are 

fo = C~ 2 

Oo = k~Cno Y[I, k(r//r/,o)a], 

where the heat-transfer coefficient is 

Cno [(x/E)/fr K]  fro(O) 

= [k~y(½, k) + exp ( - k ) ] -  1 
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and 
C = [(x/2)Ka/16]{x/[(4/K 2) + 1] - 1 }  2 

k = (2Pr/3) {x / [ (4 /K  2) + 1] - 1) -1  

The outer edge of the zero-th order shock layer 
is given by 

~ s  o ----- . 

The function appearing in 0o and CHo is the 
incomplete gamma function of order ~. Its 
general form is defined as [19] 

X 

y(a, ~0 = I exp ( -  t) t ~- 1 dt (a > 0) 
0 

which is of order a and of argument ~. It is noted 
that in the special case of order ½, the related 
integral 

;t 

I(Z ~) = ½ Y(~, X) = ~ exp ( -  t 3) dt 
o 

has been directly calculated and tabulated by 
Abramowitz [20]. 

NOTE ADDED IN PROOF 

A review as well as discussion of extensions and applica- 
ions of various approaches to continuum hypersonic 
rarefied-gas dynamics is given in the recent paper of H. K. 
Cheng, Viscous hypersonic blunt-body problems and the 
Newtonian theory, in Proceedings of International Sympo- 
sium on Fundamental Phenomena in Hypersonic Flow, 
edited by J. G. Hall, p. 90. Cornell University Press, 
Ithaca (1966). 

R/~m~---On d&:rit l'effet de la teml:~rature pari6tale sur le comportement de la couche de choc hyper- 
sonique au point d'arr~.t darts le eas de l'6coulement de d6but de jonction des couches. Le profil d'enthalpie 
~t travers la couche de choc est obtenu. On montre que la distance de d6tachement du choc est sujette/t 
des corrections compensatrices d'un effet d'"aspiration" due au gl-issement et d'un effet de "soufflage" 
dO an saut de temp6raturv, la contribution prineipale venant de la diminution globale de densit6 due au 
chauffage de la paroi. La correction totale rend la distance de d6tachement du cho¢ relativement constante 
lorsque K ~ varie, ot~ K ~ est le param~tre de rar6facticna de Cheng, la temp6rature pari(~tale &ant fix6e. 
Le rapport du flux de chaleur derrid:re l'onde de choc :~ celui ~t la paroi est ind6pendant de la temp6rature 

pari6tale et ne varie pratiquernent pas Iorsque les effets de glissement sont absents. 

Z u m l ~ l [ , ~ l V - E s  wird der Einfluss der Wandtemperatur auf das Verhalten der Stoss-Schicht in 
einem hypersonischen Staugebict bci beginnender gcmischter Schichtstr6mung beschriebon. Man erh~ilt 
das Fnthalpieprofil fiber die Stoss-Scbicht. Es zeigt sich, dass der Abstand des abgel6sten Stosses yon der 
Wand zwei ausgleichenden Korrekturen unterworfen ist. einem "Zufluss"-Fffekt durch Geschwindigkeits- 
gleitung und einem "'Abfluss"-Effekt durch Temperatursprung, wobei der Hauptbeitrag aus der Gesamt- 
dichteabnahme durch Wandheizung kommt. Die gesamten Korrekturen ergeben, dass der Abstand des 
abgvlfsten Slosses an der Wand fOr eine feste Wandtemperatur relative konstant in Bezug auf K ~ bleibt, 
wobei K 2 Chengs Verdiinnungsfaktor ist. Das Verh~tltnis der Wiirmestromdichte hinter der Stosswelle 
zur W~irmestromdichte an der Wand erweist sieh als unabh~ngig van der Wandtemperatur und ist im 

wesentlichen gleich dem entsprechenden Verh~ltnis, wenn Gleiteffekte nicht vorhanden sind. 

AlmoTutzm--OnHcuBaeTcn B~xnn~e TeMnepaTypu cTeHHH Ha IIOBe~ZeHHe rnnepaayHoro 
y~apHoro c~on B ~ J I l i a l 4  ~plrrnqecgo~ TOqgn B pemnMe nepeMemnnaHHn. I/oayqeHo pac- 
Hpe~e~eHne 9HTOJIbIIHH nonepeu y~apHoro e~on. l-[oHaaaHO, qTO HpH pacqeTe OTpUBa 
cRaq~a yIUIOTHeHII~ Heo~xo~ItMO yqHTl~WaTb HoHpaB~H 3a CqeT ¢HpHTOHa* Ha*aa CKOJIbH~eHH~ 
cgopOeTH n ,o~roHa,, BI~IaBaHHOrO TeMnepaTypH~M cHaqRoM, HpH qeM Hpeo6JIa~az)tu~M 
~tBJIHeTcR CHH~eHlte o6II~e~ HSIOTHOCTH Ha-aa narpeBa CTeHRH. (~ yqeTOM BCeX IIoIlpaBoH 
yCTaHOB~eHO, qTO MeCTO OTp~Ba eHaqRa ytI~OTHeHHH oeTaeTcH HeIIO~BHh~HMM upn HeltaMeH- 
HOM !/~JIfl IIOCTOHHHOI~ TesnepaTyp~ CTeHHH, r~e / /  napa~eTp paape~eHn~ qeHra.  I Io . ae  
8aHo, qTO OTnomeH~e TeH~IOBOrO HOTOHa 3a y~apHo~ BOJIHO~ H ~en~OBOMy nOTOgy Ha CTeng- 
He 3aBHCI4T aT TeMnepa~ypu CT4~HHH H He oT~nqaeTcn aT COOTaeTcTny~ougero OTHOmeH~tH H p H  

OTCyTCTBHH CHO~Ib~eHHH. 


