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Abstract—The effect of wall temperature on the behavior of the hypersonic stagnation region shock layer
in incipient merged layer flow is described. The enthalpy function profile across the shock layer is obtained.
The shock detachment distance is shown to be subjected to the compensating corrections of an “inflow”
effect due to velocity slip and an “outflow” effect due to temperature jump, with the main contribution
coming from the over-all density decrease due to wall heating. The net corrections render the shock de-
tachment distance to remain relatively constant with K2 for a fixed wall temperature. where K? is the
rarefaction parameter. The ratio of heat flux behind the shock wave to that at the wall is shown to be
independent of the wall temperature and is essentially the same as the corresponding ratio when slip
effects are absent.

NOMENCLATURE Z, distance from centerline to body
a, nose radius; surface;
Cy, heat-transfer coefficient; A thermal-accommodation coefficient ;
¢,  specific heat at constant pressure; B, local body surface inclination;
/s nondimensional stream function 7, c,/c,, ratio of specific heats;
—_— . X
H,  c,T + @+ 0372, total (s{:eciﬁié/u:rz-, Wa, 1), | exp (=) 7" di, incomplete gamma
thalpy; function of order a and argument y;
k, thermal conductivity; also £, (y = DAy + 1);
QPr3){[4/KH + 1] = 1] , Howarth variable: transformed normal
K?  (epo, Ua/u)(T,/T,), rarefaction para- distance to body surface;
meter ; & transformed tangential distance along
Pr,  cu/k, Prandtl number; body surface;
D, pressure; , 0, (H-H,)/H,— H,);
q, heat flux; K, longitudinal body surface curvature;
T, temperature; I viscosity;
U, free stream velocity; P, density;
u,v, velocity components tangential and o, Maxwell’s reflection coefficient ;
normal to surface, respectively; v, stream function.
x,y, distance along and normal to body
surface, respectively; Subscripts
t Present address: Center for Fluid Dynamics, Division W, wall;
of Engineering, Brown University, Providence, Rhode 0, free stream;
Island. * denotes reference conditions;
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s, at the outer edge of shock layer;

0, stagnation condition in free stream
(e.g. Tp), also zero-th order (no-slip)
quantity;

1, first-order perturbation quantity.

L. INTRODUCTION

AN INTERESTING as well as unique feature in
low Reynolds number hypersonic experimental
facilities, exemplified by the Princeton hot
nitrogen hypersonic wind tunnels [1], is that
measurements in the laboratory can be achieved
in steady-state conditions. With the advantage
of long-duration testing time, measurements of
wall temperature effects in low Reynolds number
hypersonic flow can then be more conveniently
carried out.

In this paper the classifications of the various
low density hypersonic flow regimes described
by Hayes and Probstein [2] are used. The
Mach number and unit free stream Reynolds
number in the Princeton hot nitrogen wind
tunnel can be obtained at about 20 and 4 x 10?
per in, respectively, so that on a 02 in radius
sphere the flow in the stagnation region would
be in the incipient merged layer regime. In this
regime the viscous boundary layer begins to
merge with the shock wave and there are
relatively strong viscous and heat conduction
effects immediately behind the shock wave.
The analysis given here is concerned with this
regime.

The continuum formulation of rarefied hyper-
sonic flow ‘was advocated in the pioneering
works of Adams and Probstein [3], Probstein
[4, 5] and Probstein and Kemp [6]. In the
approach of the last reference, numerical in-
tegrations of the Navier-Stokes equations were
carried out for highly cooled and for insulated
walls after certain symmetry assumptions in the
stagnation region were made and the as-
sumption of constant density. Subsequently,
Levinsky and Yoshihara [7] gave numerical
results for the case when the constant density
assumption was removed. Implicit in the
symmetry assumptions, however, is the condi-

tion that the shock layer and shock structure
must necessarily be thin compared to the body
radius.

The continuum description of low Reynolds
number hypersonic flow based consistently
on the “thin shock layer” approximation was
brought to its present stage of fruition in a
series of papers by Cheng [8, 9]. For the in-
cipient merged layer regime the problem in the
shock layer is entirely independent of the shock
wave structure. The conditions at the outer
edge of the shock layer are those of the modified
Rankine-Hugoniot relations taking into account
viscous shear stress and heat conduction behind
the shock wave. The effects of shock thickness
and curvature do not enter into the first-order
thin shock layer analysis. The shock structure
can be calculated once the shock layer solution
is given. With the assumption of a linear
viscosity—-temperature relation, the problem for
the shock layer can then be exactly solved and
represented in terms of known functions. The
heat-transfer coefficient obtained compares well
with experiments (see Cheng [8, 9], Cheng
and Chang [10]). This regime of flow is also
discussed by Bush [11].

The effect of increasing T, /T, is to introduce
slip effects at the wall and it can be considered
as a perturbation of the basic no-slip solution
within continuum considerations. The order
of this effect has been estimated by Cheng [9]
and by Cheng and Chang [12] to be (¢T,/Tp)?,
where € ~ y/a < 1 is the order of the shock
layer thickness ratio. The effect of wall tempera-
ture on the stagnation region surface heat-
transfer rate has been considered in detail by
Cheng and Chang [12]. They derived a slip
correction to the no-slip heat-transfer coefficient
obtained earlier by Cheng [8] for the K* = 0(1)
regime. These authors also qualitatively dis-
cussed the slip effects on the shock detachment
distance in the limiting case of T, /T, — 1.

Because of the practical interest associated
with hypersonic flight and laboratory experi-
ments in low Reynolds number hypersonic
flow, the effect of wall temperature on the
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behavior of the entire shock layer itself is of
interest as well. The present paper complements
the work of reference [12] by providing the
effect of wall temperature on (1) the detailed
distribution of the enthalpy function across
the shock layer and (2) the shock detachment
distance or the shock layer thickness.

In deriving the surface heat-transfer rate,
Cheng and Chang [12] used a normal coordinate
related to the stream function.t This introduces
a singularity at the wall when the slip boundary
conditions are applied. This difficulty was
removed through the use of an inner and outer
expansion technique [12]. In the present paper,
the shock detachment distance and enthalpy
function corrections due to slip effects will be
derived through the use of the Howarth trans-
formed normal coordinate where the problem
may be considered in a similar manner to that
of Lin and Schaaf [14] for the low-speed high
Reynolds number stagnation region (see also
Lees [15]). This is particularly advantageous
in seeing physically how the slip effects affect
the shock detachment distance. As a by-product
the surface heat-transfer rate is obtained which
verifies the low Reynolds number hypersonic
stagnation region slip flow heat-transfer formula
of Cheng and Chang [12] through an alterna-
tive derivation.

There are two slip effects: velocity slip and
temperature jump. Their effect on the shock
detachment distance is such that they tend to
counteract each other. Velocity slip at the wall
gives rise to an additional mass flow within the
shock layer and thereby induces a mass “inflow”
effect from the outer edge of the shock layer and
reduces its thickness. On the other hand, the
temperature jump gives rise to an additional
expansion of the gas near the wall and induces
an “outflow” effect which tends to thicken
the shock layer. The wall temperature depen-
dence of the “outflow”™ effect behaves like
(1 — T,/Ty) T,/T, for a fixed rarefaction para-

1 In spirit, the square root of the similarity variable used
by von Kdrman and Tsien [13].

meter K? in the incipient merged layer regime.
This quantity has a maximum at T,/T, = %
so that the “outflow™ effect decreases as
T,/T, = 1 when T,/T, > §. The “inflow” effect,
on the other hand, behaves like

TN\ T.\} T \}
T | B A s
"1<1 TO><TO> * 2<To>

where k;, and k, are constants for a fixed
rarefaction parameter in the incipient merged
layer regime, and increases monotonically with
T,/ T,- This implies that, as the wall temperature
increases, the “outflow” effect eventually be-
comes small and the “inflow” effect dominates.
However, the bulk of the contribution to the
shock detachment distance comes from the
overall decrease of the density level in the shock
layer with wall temperature.

In Section II the thin shock layer equations
and boundary conditions are stated. The pertur-
bation shock layer solution is discussed in
detail - in Section III, including the first-order
shock layer equations and the perturbed shock
and wall boundary conditions, the first-order
stream function and the shock location, and
the distribution of the enthalpy function across
the shock layer. Section IV discusses the various
corrections to the shock detachment distance.
Section V discusses the relative extent of heat
conduction across the entire shock layer.

I. SHOCK LAYER EQUATIONS AND
BOUNDARY CONDITIONS

The thin shock layer equations obtained by
Cheng [8, 9] are, for an axisymmetric blunt
body in the incipient merged layer regime, in
physical coordinates (see sketch in Fig. 1),

Continuity
opuZ  dpvZ
ox y

0 (2.1)

Momentum

ua—u+ vél—‘—E ?E (2.2
P o pé’y—ay ”ay : 2)
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;E = xpu® (2.3)
Fnergy oy
u@_H N UaH 1 0 ( 0H
Ploax ™ ° dy  Proy #6y
1 e ﬁuz/'z
State
p = pRT. (2.5)

We assume Pr and ¢, are constants. Cheng
[8, 9], however, retains the tangential pressure
gradient —dp/0x, second order in the incipient
merged layer regime, to permit uniform exten-
sion of his solution towards the higher Reynolds
number range. Cheng [8, 9] also obtains, for
the conditions at the outer edge of the shock
layer, the modified Rankine—Hugoniot relations

. LIU

Shock structure

. Shock layer

F1G. 1. Thin shock layer and notation. Schematic.

u2 y=7Js
H + (Pr — 1)7]

P = poubl

(2.6)

du
pmvm(u - uor;) =R
ay
u 0
o ooH e Hoo = 5" A
Pt ) Pr@y[
where u, = U cos f,v,, = — U sin 8. The loca-

tion of the outer edge of the shock layer, y,,
is to be simultaneously determined with the
solution of the shock layer problem. With the
conditions at the wall given, the problem in
the shock layer is then specified and can be

solved independently of the shock wave struc-
ture. In the following analysis, we will be only
concerned with the shock layer- solution. The
conditions at the wall, in terms of first-order
slip effects, may be written as [16]

2 o)
o 2) /(pp) 3y
2y 12-—-u

u T (2.7)

’I;;—Tw= Do
y+ 1Pr «

\/ G) J(pp) 3y

where ¢ is Maxwell’s reflection coefficient and
o the thermal-accommodation coefficient.
#//(pp) is to be evaluated at the surface gas
temperature T, which is as yet unknown. In the

subsequent approximations for ‘“‘small slips”
within continuum considerations, however,
1//(pp) can be evaluated at the wall tempera-
ture T,, which is here assumed to be constant.
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Except for the presence of the pressure
gradient normal to the surface, which does not
enter in the subsequent considerations of the
stagnation region, the thin shock layer equations
resemble the usual compressible boundary-
layer equations. Here, in general, the conditions
for the outer edge are to be satisfied at the
as yet to be determined shock layer edge,
instead of at infinity as in the boundary-layer
problem. Drawing from compressible boundary-
layer theory, we introduce the Howarth-Levy
transformations in the form similar to that
given by Lees [17]:

&= jpo#o“wzz dx
um

z (2.8)
= d
=00 fpdy

With the introduction of the stream function

oy W
pulnZ = —é;, pv2nZ = — e 2.9)
and its nondimensional form
Y u .,
S

the continuity equation is then automatically
satisfied. The prime indicates differentiation
with respect to n. With a nondimensional total
enthalpy function defined as

H-H,
Hoo_Hw

the shock layer equations for the stagnation
region, where Z ~ x, u,, ~ U(x/a), become

0= (2.11)

fw +ﬂ” — %f’z =0 (212)
=0 2.13)
0"’ + Prfo’ =0. (214)

The linear viscosity—temperature assumption is
made (i.e. pp = constant). One is referred to the
discussion by Cheng and Chang [ 10] for the justi-
fication of the assumption. The Howarth variable
in the stagnation region is now reduced to

n=(/DK pi%y— 2.15)

a0

and the rarefaction parameter K? is defined as

Kz =¢ poan(#OT*>
Ho .u*TO

where u, is to be evaluated at the appropriate
reference temperature T, similar to that dis-
cussed in reference [10]. K? = 0(1) for the
incipient merged layer regime.

The outer boundary conditions now appear in
the form

(2.16)

, V2
— 1 N A "”
! K ! (2.17)
n=n, .
=1 V2 o
- PrK

where 5, is to be simultaneously determined
with the shock layer solution from the mass
conservation condition Y = p,Unx?. This is
[(/2//K]f(n,) = lintermsof thenondimensional
stream function. The conditions at the wall are

f=0
, 2-g tT\V2 .,
r= (R

o 2 Ll2-a [(nT) )2,
T y+1Pr «a 2T,) K

I11. PERTURBATION SHOCK LAYER SOLUTION

A. First-order shock layer equations

Within the thin shock layer continuum des-
scription of low Reynolds number hypersonic
flow, the effect of velocity slip and temperature
jump can be treated as a perturbation on the
no-slip solution. Since the slip effects are of
order /¢, one then expands as follows:

f=fo+Wofi +... (3.1)
0=0,+ (/90 +... (3.2)

where the zero-th order functions are Cheng’s

(2.18)
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[8] no-slip stagnation region shock layer
solution. Since the zero-th order functions [§]
appear repeatedly in the first-order problem,
they are quoted in Appendix A for the purpose
of reference.

The first-order perturbation shock layer equa-
tions are obtained by substituting the expansions,
equations (3.1) and (3.2), into equations (2.12)
and (2.14), retaining terms only of the first
order

U Sofi =foft +fofi =0 (33)
07 + Prfo; = — Pré;f,. (34)

With Cheng’s [8] stream function f;, stated in
Appendix A, the first-order momentum equa-
tion, (3.3), then becomes

4 C(?’]Zf _ zrlf/l + 2f1) =0. (3.5

Upon substituting Cheng’s [8] enthalpy func-
tion #,, also stated in Appendix A, the first-

order energy equation (3.4) becomes
07 + PrCn*0y, = — Pr{(PrKCpg,/\/2)

x exp[— kn/no 1} fi.  (3.6)

B. First-order shock and wall boundary conditions

Although the exact location of the outer
edge of the shock layer is as yet unknown, it
may be written as the following expansion

Ny =N, + (N5, + 3.7)

where 7,, is the first-order shock location per-
turbation, to be determined as part of the solution.
The first-order shock boundary conditions are
obtained by substituting the expansions, equa-
tions (3.1) and (3.2), into equation (2.17) and
subsequently transferring the location where the
conditions are to be applied from n, to 5, by
a Taylor expansion.

The shock boundary condition for f] is then

1+ [(JK]SfY =

The corresponding condition for 6, is

0, + [(2/PrK] 0,

=0

The right side of equation (3.9) becoming zero can be easily shown by substituting 8y =

— g {fo + [WNKUWI
= -, 2C ‘

0= s (3.8)

—1,,406 + [(V2DAPrK)16;
M106 + [(V2APr ]o}}n=nw 49
~Pr fobo

from Cheng’s [8] energy equation and subsequently noting that the zero-th order stream function is
required to be [(/2)/K] f, = 1 atyn = n,, from mass conservation considerations.

The boundary conditions at the wall are now

fi=0

, _2=9al(rTN\J2,, _
r= 22t E) L -

2y 12-a [(nT\J2,
0, = == —00=
y+1Pr o 2T,/ K

G R e

n=20 (3.10)

K
2y 2 —u
\/(2 T())C,,D}n =0, (3.11)

C. First-order stream function and shock location

The first-order momentum equation, given
by equation (3.5), has the exact solution (see,
for instance, Kamke [18])

fi=am+am* + as{ngn‘z exp [ —Cn*/3]dn

—n? [n %exp[—Cn*3]dn}  (3.12)
0
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where a,, a, and a; are constants to be deter-
mined. The fact that a; must vanish in order
to satisfy the first of equations (3.10) may be
seen by evaluating the integrals by parts once
to bring out the finite contribution at n = 0.
The third term in equation (3.12) becomes

i\t (, on
ot (F) (45
C 3\ %+ C 3
- (T”) y(%, T") —dexp(— Cn3/3)}.

Both incomplete gamma functions vanish at
n = 0, while the exponential term gives a
contribution of —3. Hence a; = 0.

The second condition in equation (3.10) gives

2—0 [(nT,\/2
a, = o \/(E?O>?2C

The shock boundary condition, equation (3.8),
gives

a = — (ay + 1,202 [(J2)/K + 1,,].

The solution for the first-order stream func-
tion, fi, still contains the unknown 7, which
is to be presently determined. At the outer
edge of the shock layer #,, we recall from the
previous discussion in Section II that the
nondimensional stream function is required to
be [(+/2)/K] f(n) = 1. In terms of the first-
order quantities, after transferring the applica-
tion of this condition from 7, = 1,5 + (/&) 7, +
... to 1, we have

.o +f1i=0 at n=n, (315

Substituting equation (3.14) into equation (3.12)
(with a3 = 0) for f;, equation (3.15) then
determines 7, as

s, = — a,/2C (3.16)

where a; is given by equation (3.13). Upon
substituting #,, back into the solution for f,
equation (3.14) then gives the condition that
a, = 0. Finally

[2-0 (2T 2
fl—[ = \/(5?0)?%]4 (3.17)

(3.13)

(3.14)

A useful form of #,, is the ratio 7, /n,,, which
may be written in the form

s _ _2=0 [(T\(Pr
o 222 JGEER) e

The physical reason for n, being negative is
that the additional mass flow near the wall
due to tangential velocity slip induces an inflow
of mass across the outer edge of the shock layer,
and this has the direct effect of reducing the
shock layer thickness.

D. First-order enthalpy function

The nonhomogeneous first-order energy
equation, (3.6), can be integrated directly to
give

8, = — Pr(Pr KCy,/\/2) i’ exp [~ k(i/n,)°]

x ) filn') dn' d7f

Ot

+ b, i'exp [= k(i/n,)*] dff + by, (3.19)

With f; given by equation (3.17), equation
(3.19) can then be put into the form

2—0 nT,
- \/(E i) Pr Cy,
x {1 — exp [kin/n,)*1}
3
P\r/zK key[%, k(nl) ] + b, (320)

So

91=

+ by

From the shock boundary condition for 8,
given by equation (3.9), b, is determined as

2—0 nT
b, = .
1T, \/<2T0>Pr
l——i 2y 2—oc0
Pry+12—-o0a

This form is obtained through the use of the
definition of Cheng’s [ 8] heat-transfer coefficient
Cy, quoted in Appendix A.

(3.21)
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The wall boundary condition, equation (3.11),
determines b, as

2y 2—ua nT,
b, = 22
2T+l o« \/(2T0>C”" (3:22)

Through the use of Cheng’s [8] enthalpy
function 6, (and 0;), the first-order enthalpy
profile given by equations (3.20), (3.21) and (3.22)
can be written entirely in terms of the zero-th
order functions

() = ’\/<2T> {\/ 65(n)
0
2y 2—o00
* Cu (P?mz——-&a_l>

x [1 - Ho(nﬂ} . (323)

To illustrate the effect of wall-temperature
ratio on the over-all enthalpy function across
the shock layer, Figs. 2, 3 and 4 are presented
for the values of rarefaction parameter K? = 10,
4 and 1, respectively. The normal coordinate is
n/ns,. For a fixed value of K?, increasing the
wall temperature increases the value of the
enthalpy function from its no-slip value 8.
This effect is more pronounced near the wall.

08

06

0-2

0

F1G. 2. Enthalpy function as function of n/n, for K* = 10,

v = 14, Pr = 071, 6 = « = 1 and various values of T,/T;.

-0

0-8

04

0-2

F1G. 3. Enthalpy function as function of n/n,,, for K* =
= 14, Pr = 0-71, 6 = a = 1 and various values of 7,/ Ty,

08

ool

0-2+

FiG. 4. Enthalpy function as function of /7, for K* = 1,
v = 14, Pr = 071, 0 = o = 1 and various values of T, /T,

At the same time the outer edge of the shock
layer is brought closer to the wall due to the effect
of velocity slip. For a fixed wall-temperature
ratio, the distortion of the no-slip enthalpy
function becomes more pronounced as K-
decreases.
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E. Relation between physical and transformed
coordinates

The relation between the physical coordinate
y and the transformed coordinate # is obtained
by inverting the Howarth transformation. Its
form for the stagnation region is defined by
equation (2.15). Since the pressure is constant
across the shock layer at the stagnation region,
the density ratio p,/p is simply T/T,. The latter is
simply related‘to the enthalpy function ¢ in the
stagnation region. The physical distance normal
to the wall is then obtained from the integral

All the first-order “inflow™ correction is
embedded in the integration of the first two
terms in equation (3.24) with respect to n over
the interval 0 < 5 < #n,, + (\/e)n,,. The func-
tions resulting from this integration are further
expanded in a Taylor series about #,,. To be
consistent only the first-order perturbations.
need to be retained. The zero-th order functions
resulting from such an expansion would be the
basic contribution to the shock detachment
distance obtained from Cheng’s [8] solution.

RIS S Dy R A Y " _
ea (2K j{To + (1 To>[60(’7) + (e 0,(7) + ]} dr . (3.24)
[

For brevity, we define { = n/n,. The physical coordinate is then obtained as

K?*Pry T, T
KA. — _ Lt 2 3
3k ea T ¢+ (1 TO)[CGO(C) k3Cy,y3, k(7))
2—0 TCTW Tw 1 ’ 1 2')’ 27— a0
+ - \/(65?0) (1 ﬁ) Pr{3k 8o(0) + CHO(};—‘—y 112 —oa 1) (1 = 6,(0)]
+ kG, k?))}. (3.25)

Again, use is made of the definition of Cheng’s [8] enthalpy function 6,,.

IV. SHOCK DETACHMENT DISTANCE

The shock detachment distance is obtained by
carrying the integral in equation (3.24) to the
perturbed edge of the shock layer n, = 7., +

Jems, + -

The first-order functions, linear in \/e, are then
the actual “inflow” correction terms. The inte-
gration of the third term in equation (3.24), up
to n,, only, gives the “outflow” correction terms.

For the purpose of keeping the various contributions to the shock detachment distance distinct

as discussed above, we may write

Vs Yso Vs Vs,
== 20y ([ 2 Al e
€a €a (\/ )<€a>lnflow * (\/e)<6a)0utﬂow "

4.1)

The three functions on the right of equation (4.1) are then defined as:

(1) The zero-th order contribution is the shock detachment distance given by Cheng [8] for the

no-slip case

Vso 3k (T,
ea Prk?

T,
uy (1 _ ‘Ti) K} Co[¥3,K) — k493, k)]}.

4.2
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(2) The “inflow” correction, due to velocity slip, is

t\2 — o 1
BVAGE] Rme

Vs,
(\/6) ( €a )Inflow

l

T\ T T.\*
Zw L | T % | SNG 3
To> +< To><To> 2 oo 1 k)}- (4.3

(3) The “outflow” correction, due to temperature jump, is

) el

1 2y 2—ao

(I’;y+12—aa

K2

Vs
(\/6) <5>0utflow

TA\( T\
T, )\To

1 1
3%t (3, k)

1> (1 — k3 Cu v, k) — k™93, k)])}. (4.4)

The negative of (\/€)(y;,/€@ntiow 1S shown in
Fig. 5 as solid lines as a function of T,/T, for
various values of K?, while (\/€)(y;,/€@)oufiow 1S
shown in the same figure as dotted lines. The
“inflow” correction is monotonic and always
tends to decrease the shock detachment distance.
The “outflow” correction always give a positive
contribution and has a maximum at T,/T, =
0-333, beyond which it decreases. The difference
between the solid and dotted curves for a fixed

= V€5, /€0 100

— =+ Sl /eounion

/T

FiG. 5. Shock detachment distance “inflow’” and ““outflow™
corrections as function of wall-temperature ratio, for y =
14, Pr = 071,06 = « = 1 and various values of K2

K? gives the net correction to the zerp-th order
no-slip shock detachment distance. For the
range of K2 shown in Fig. 5. the net correction
to the shock detachment distance is positive
for the lower range of wall temperature ratios
(T,/T, < 0-2) and is negative beyond this range
(T,/T, = 0-2).

The dotted lines in Fig. 6 show the zero-th
order no-slip shock detachment distance ob-
tained by Cheng [8], (s, /ca), as a function of the
rarefaction parameter for various wall-tempera-
ture ratios. The solid lines are the new shock
detachment distances with the slip corrections
applied. For the lower ranges of wall-tempera-
ture ratios (v, /ea) tends to increase with K2,
while the corrections give a net positive contri-
bution. For relatively higher ranges of wall-
temperature ratios (y,, /ca) tends to decrease with
K?, while the corrections give a net negative
contribution. Hence the corrected shock detach-
ment distance tends to remain constant with K?
as shown in Fig. 6. At K* = 1, for instance.
(y/ea) at T,/T, ~ 05 is about twice its value
at T,/T, — 0, that is, y/(y)r, 1, -0 ~ 2. Thisis
certainly an experimentally observable ratio.

V. HEAT CONDUCTION ACROSS SHOCK LAYER

The extent of heat conduction across the
entire shock layer is of interest in the incipient
merged layer regime. In particular, this consi-
deration will give the slip effects, if any, on the
relative extent of heat conduction into the
shock layer at the outer edge of the shock layer
as compared to heat conduction into the wall.
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~ ~N
B o ~ -
~ ~ \\
12 \\ ~ ~
~ > ~a
5 S~ ~< ~ L /%)=09
\\\ ——
rof- ~& == e —
| N‘ oge- ______
T 0-333
- —_—
3 o8 el 02
5 oL ——
—— —r o _——
0-6- e
—_—
o4 ————1(y, /«0), from Cheng {1961)
02 1 1 J - 1 1 1 | I o
o 04 o7 X 2 4 7 10
Kz

FiG. 6. Shock detachment distance as function of rarefaction parameter, for
y = 14, Pr = 071, ¢ = « = 1 and various values of T/T,,.

The following nondimensional ratio is written
for any point across the shock layer:

[k(0T/0y)]

= V2 n T,
p“’U(Hw_Hw)—PrK 0("){1_ 55—1—,; Pr

15, + (e, + ... to its corresponding value
at the wall, equation (5.2). This then gives the

G

Cu, exp [ —k(n/n,,)’]

4 /(25 p, 20 PAREEETTEAVE b
2T, o [\ Pry+12—ocu« Ho
where use is made of equation (3.23) and the definition of 4(n).
At the wall equation (5.1) becomes
k(@T/o C

Cy =

= oL UH, —H,) nT,
1+ 62 T, Pr

2—ai 2y 2—ag N e
¢ \Pry+12—-o0a Ho

which is the corresponding surface heat-trans-
fer formula obtained by Cheng and Chang [12].
Hence their wall heat-transfer result is verified
by an alternate method of derivation.

At the outer edge of the perturbed shock
layer, equation (5.1) can be appropriately ap-
proximated by expansion about 7,, as was done
before. After performing this expansion, we
then form the ratio of equation (5.1) at 5, =

ratio of heat conducted into the shock layer
behind the shock wave to the heat conducted
into the wall,

95 _ Wdo _

i oo -3

We thus arrive at the simple result that this
ratio is the same as the corresponding ratio
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when slip effects are absent. That is, it is inde-
pendent of the wall temperature ratio. It only
depends on the rarefaction parameter K2 and the
Prandtl number Pr through the parameter k.
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APPENDIX A [8, 9]

The zero-th order problem, which is Cheng’s
[8, 9] no-slip solution for the stagnation region
when the rarefaction parameter K2 is of order
unity, is quoted here for the purpose of con-
venience. The zero-th order and related func-
tions appear repeatedly in the perturbation
solution for slip effects.

The governing transformed equations are

+fofs — 3 fo)* =0
By + Prfof, =0
The shock boundary conditions are
fo=1-[2KI1fs
0o =1 — [(2/PrK]6, [

and the wall boundary conditions are f, = f, =
6, = 0 at n = 0. The solutions are

Jo= C'IZ
8 = k¥Cy, y[3, kin/n,,)],
where the heat-transfer coefficient is

Cu, = [(/2)/Pr K] 6,(0)
= k¥, k) + exp (=k)] !

IH

Il

= Ny
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and

C = [(VOK16|{[@/K?) + 1] — 1}*
k = @Pr/3) {J[4/K? + 1] — 1}7L.

The outer edge of the zero-th order shock layer

is gi ven by
[ T

The function appearing in 6, and Cy, is the

incomplete gamma function of order . Its

general form is defined as [19]

X

Wa, y) = fexp(—p ™1 de

0

(a>0)

which is of order a and of argument . It is noted
that in the special case of order 3, the related
integral

1% = 496, 1) = I exp (— %) dt

has been directly calculated and tabulated by
Abramowitz [20].

NOTE ADDED IN PROOF

A review as well as discussion of extensions and applica-
ions of various approaches to continuum hypersonic
rarefied-gas dynamics is given in the recent paper of H. K.
Cheng, Viscous hypersonic blunt-body problems and the
Newtonian theory, in Proceedings of International Sympo-
sium on Fund, tal Ph in Hypersonic Flow,
edited by J. G. Hall, p. 90. Cornell University Press,
Ithaca (1966).

Résumé—On décrit I'effet de la température pariétale sur le comportement de la couche de choc hyper-
sonique au point d’arrét dans le cas de I'écoulement de début de jonction des couches. Le profil d’enthalpie
A travers la couche de choc est obtenu. On montre que la distance de détachement du choc est sujette a
des corrections compensatrices d'un effet d’““aspiration™ due au glissement et d’un effet de “soufflage”
dii an saut de température, la contribution principale venant de la diminution globale de densité due au
chauffage de la paroi. La correction totale rend la distance de détachement du choc relativement constante
lorsque K? varie, ol K? est le paramétre de raréfaction de Cheng, la température pariétale étant fixée.
Le rapport du flux de chaleur derriére I’onde de choc 3 celui 4 la paroi est indépendant de la température
pariétale et ne varie pratiquement pas lorsque les effets de glissement sont absents.

Zusammenfassang—Es wird der Einfluss der Wandtemperatur auf das Verhalten der Stoss-Schicht in
einem hypersonischen Staugebiet bei beginnender gemischter Schichtstrdmung beschrieben. Man erhilt
das Enthalpieprofil tiber die Stoss-Schicht. Es zeigt sich, dass der Abstand des abgelsten Stosses von der
Wand zwei ausgleichenden Korrekturen unterworlen ist. einem **Zufluss"-Fflekt durch Geschwindigkeits-
gleitung und einem *“Abfluss”-Effekt durch Temperatursprung, wobei der Hauptbeitrag aus der Gesamt-
dichteabnahme durch Wandheizung kommt. Die gesamten Korrekturen ergeben, dass der Abstand des
abgelBsten Stosses an der Wand fiir eine feste Wandtemperatur relative konstant in Bezug auf K2 bleibt,
wobei K? Chengs Verdiinnungsfaktor ist. Das Verhiltnis der Wiirmestromdichte hinter der Stosswelle
zur Wirmestromdichte an der Wand erweist sich als unabhingig von der Wandtemperatur und ist im
wesentlichen gleich dem entsprechenden Verhiltnis, wenn Gleiteffekte nicht vorhanden sind.

AnnoTanuA—OnUCHBAeTCA BIMAHWE TEMHEPATYpH CTeHKH HA NOBeJeHME T[HIIEP3BYKOrO
YOAPHOro CJI0A BOJM3U KPUTHYECKO# TOYKM B perkuMe NepeMemmBauuA. Ilounydeno pac-
npefeneHUe BHTANIBNMN ToNepek ynxaphoro cios. Ilokasamo, uTo mpM pacyere OTPHBA
CKaYKa YIUIOTHeHMA HeOGXOMMMO YUHTHBATE NIONTPABKH 33 CYET ¢HPUTOKA» M3-3a CKOJIbHEHHHA
CKOPOCTH M ¢0TTOK&», BH3BAHHOTO TEMIEPATYPHHM CKAYKOM, IIPH YeM NpeoGaagaloHiuM
ABJIAETCA CHMKeHne o0liell HIOTHOCTH M3-3a HarpeBa CTeHKH. C y4eTOM BCeX MNONMpPAaBOK
YCTAHOBJIEHO, YTO MECTO OTPHBA CKAYKA YINIOTHEHAA OCTAeTCH HEMOJBMHKHEIM MPU HeyM3MeH-
HoM K A mocTOAHHON TeMmepaTypH crenku, rie K mapamerp paspessennsn Yenra. [lokae
3aHO, YTO OTHOIUIEHHE TENJIOBOTO NMOTOKA 33 YAAPHON BOJHOM K TEMJIOBOMY NMOTOKY HA CTEHK-
He BABMCHT OT TEMIEPATYPH CTEHKM M He OTJIMYAETCA OT COOTBETCTBYIOLIET® OTHOLIGHHA NpH
OTCYTCTBHM CKOJNBKEHUH.



